
Errors and Uncertainty in Experimental Data 
 
Causes and Types of Errors 
  
Conducting research in any science course is dependent upon obtaining measurements. No measure is ever 
exact due to errors in instrumentation and measuring skills. If you were to obtain the mass of an object with a 
digital balance, the reading gives you a measure with a specific set of values. We can assume that the actual 
measure lies either slightly above or slightly below that reading. The range is the uncertainly of the 
measurement taken. More accurate instruments have a smaller range of uncertainty. Whenever you take a 
measurement, the last recorded digit is your estimate. We call digits in a measurement significant figures.  
  
All measurements have inherent uncertainty. We therefore need to give some indication of the reliability of 
measurements and the uncertainties in the results calculated from these measurements. When processing your 
experimental results, a discussion of uncertainties should be included. When writing the conclusion to your lab 
report you should evaluate your experiment and its results in terms of the various types of errors. To better 
understand the outcome of experimental data an estimate of the size of the systematic errors compared to the 
random errors should be considered. Random errors are due to the accuracy of the equipment and systematic 
errors are due to how well the equipment was used or how well the experiment was controlled. We will focus 
on the types of experimental uncertainty, the expression of experimental results, and a simple method for 
estimating experimental uncertainty when several types of measurements contribute to the final result. 
          
1. Random errors: Precision (Errors inherent in apparatus.)  
  

A random error makes the measured value both smaller and larger than the true value. Chance alone 
determines if it is smaller or larger. Reading the scales of a balance, graduated cylinder, thermometer, etc. 
produces random errors. In other words, you can weigh a dish on a balance and get a different answer each 
time simply due to random errors. They cannot be avoided; they are part of the measuring process. 
Uncertainties are measures of random errors. These are errors incurred as a result of making measurements on 
imperfect tools which can only have certain degree of accuracy. They are predictable, and the degree of error 
can be calculated. Generally they can be estimated to be half of the smallest division on a scale. For a digital 
reading such as an electronic balance the last digit is rounded up or down by the instrument and so will also 
have a random error of ± half the last digit. 

  
2. Systematic errors: Accuracy (Errors due to "incorrect" use of equipment or poor experimental design.)  
  

A systematic error makes the measured value always smaller 
or larger than the true value, but not both. An experiment 
may involve more than one systematic error and these errors 
may nullify one another, but each alters the true value in one 
way only. Accuracy (or validity) is a measure of the 
systematic error. If an experiment is accurate or valid then 
the systematic error is very small. Accuracy is a measure of 
how well an experiment measures what it was trying to 
measure. These are difficult to evaluate unless you have an 
idea of the expected value (e.g. a text book value or a 
calculated value from a data book). Compare your 
experimental value to the literature value. If it is within the 
margin of error for the random errors then it is most likely 
that the systematic errors are smaller than the random errors. 
If it is larger then you need to determine where the errors have occurred. Assuming that no heat is lost in a 
calorimetry experiment is a systematic error when a Styrofoam cup is used as a calorimeter. Thus, the 

Examples of Systemic errors: 
• Leaking gas syringes.  
• Calibration errors in pH meters.  
• Calibration of a balance  
• Changes in external influences such 

as temperature and atmospheric 
pressure affect the measurement of 
gas volumes, etc.  

• Personal errors such as reading 
scales incorrectly.  

• Unaccounted heat loss.  
• Liquids evaporating.  
• Spattering of chemicals  

 
 



measured value for heat gain by water will always be too low. When an accepted value is available for a result 
determined by experiment, the percent error can be calculated. 

  
Categories of Systematic Errors and how to eliminate them:  

          
a. Personal errors: These errors are the result of ignorance, carelessness, prejudices, or physical limitations 
on the experimenter. This type of error can be greatly reduced if you are familiar with the experiment you 
are doing. Be sure to thoroughly read over every lab before you come to class and be familiar with the 
equipment you are using. Be Prepared!!! 
          
b. Instrumental Errors: Instrumental errors are attributed to imperfections in the tools with which the analyst 
works. For example, volumetric equipment such as burets, pipets, and volumetric flasks frequently deliver 
or contain volumes slightly different from those indicated by their graduations. Calibration can eliminate 
this type of error. 
          
c. Method Errors: This type of error many times results when you do not consider how to control an 
experiment. For any experiment, ideally you should have only one manipulated (independent) variable. 
Many times this is very difficult to accomplish. The more variables you can control in an experiment the 
fewer method errors you will have. 

  
Estimating and Reducing Errors through Proper Measurement Technique 
  
• Scientists make a lot of measurements.  They measure the masses, lengths, times, speeds, temperatures, 

volumes, etc.  
  
• When they report a number as a measurement the number of digits and the number of decimal places tell 

you how exact the measurement is  
o For example: 121 is less exact than 121.5  
o The difference between these two numbers is that a more precise tool was used to measure the 121.5.   
o If a scientist reports a number as 121.5 they are saying that they were able to measure that quantity up to 

the tenths place.   
o If a scientist reports a number as 121 they are saying that they were able to measure that quantity up to 

the ones place.  
o The total number of digits and the number of decimal points tell you how precise a tool was used to 

make the measurement.   
  
• Reporting measurements:  
a. There are 3 parts to a measurement:  

         1.  The measurement 
         2.  The uncertainty 
         3.  The unit 
 

b. Example: 5.2 ± 0.5 cm  
         1. Which means you are reasonably sure the actual length is somewhere between 4.7 and 5.7 
 

c. No measurement should be written without all three parts.  
 

d. The last digit in your measurement should be an estimate  
1. If the smallest marks on your tool are .001 apart (as they are on a meter stick that has millimeters 

marked) then your last digit should be in the ten-thousandths place (i.e. 0.0010)* 
  



*This is true for measurements that donít fluctuate.  If the tool you use fluctuates then your estimated 
digit will probably not be smaller than the smallest hash mark on the tool but should indicate how sure 
you are of the exactness of your measurement.  See below for how to deal with this situation. 

  
2. Logic: 
 

 
In the above, you would report the length of the bar as 31.0 ± 0.5 cm (assuming the big marks are 
centimeters). The bar appears to line up with the 31st mark and you know it is more than 1/2 way from 
the 30 mark and less than 1/2 way from the 32nd mark.  So you can be reasonably sure the actual length 
of the bar is between 30.5 and 31.5 cm.   
 

 
In the above, you would report the length of the bar as 31 ± 2 cm.  You know the bar is longer than 30 
cm and the last digit is your best guess.  You are reasonably sure the actual bar length is between 30 and 
33 cm.    

  
e. The uncertainty is 1/2 the amount between the smallest hash marks.  Notice in the above 2 examples that 

this is the case.  
       1. This rule may change depending on the book you look at or the teacher you work with.   

 2. Some uncertainties are determined by the manufacturer. (e.g. electronic balances, probes) 
       3. Some uncertainties are determined based on what you, as the experimenter decide: 
 

 
In this case, the divisions between the mark = 0.2 cm which makes estimating a digit trickier.  If you say 
the measurement is right on the 6.2 mark than according to the above rules you should report the 
measurement as 6.20 cm. However, the uncertainty, according to the rules above is 1/2 the distance 
between the smallest two marks, or 0.2/2 = 0.1.  It doesn’t make sense to say 6.20 ± 0.1 cm because your 
uncertainty is so much bigger than the estimated digit (the zero).  So, we need to go back to the most 
important idea of reporting uncertainties.  We need to report a measurement that we are reasonably sure 
of.  I am reasonably sure that the blue bar is bigger than 6.1 cm and less than 6.3, in which case you 
would report the measurement as 6.2 ± 0.1 cm, but you could also argue that the blue bar is bigger than 
6.15 and less than 6.25 cm.  In which case you would report 6.20 ± 0.05 cm. This is where you, as the 
experimenter, have to make the decision.   Consider what another experimenter would get if he/she 
measured the blue bar again.  Consider the implications of stating a too precise number.   

  
f.  From data provided by the manufacture (printed on the apparatus). Temperature probes for example state 
that the uncertainty is 0.2oC.  



  
g.  From the last significant figure in a measurement (as for a digital balance). Since our digital balances 
measure to .01 g, (or 0.001 g) we assume that the unseen digit is rounded either up or down, so the 
uncertainty is ± 0.01 g (± 0.001 g)  

  
h. Measurements can sometimes be difficult to determine.  The following are some 
important techniques.   
   1. When measuring liquids that have a curve at the surface, measure from the bottom 

of the meniscus. The meniscus is the curve formed at the surface of a liquid due to 
attraction of the liquid for the sides of the container (adhesion).   Measuring from the 
bottom ñ you should get 2.75 ± 0.05 mL (assuming the marks represent milliliters).   

  

 
2. Sometimes the measurement on an electronic balance will fluctuate.  Start with the 

numbers that are not fluctuating and then make your best guess as to what the next 
digit would be.  Say for example you are weighing something on a balance and you get the following 
readings: 

         
1.  12.345 
2.  12.320 
3.  12.349 
4.  12.357 
5.  12.327 

                                  
This should be reported as a measurement of 12.34 ± 0.05. If you use a balance containing a shield the 
fluctuations will be greatly reduced.  

  
Remember: when reporting measurements, you need to do 3 things 
1. give the measurement (the magnitude) 
2. tell how good a tool you used to measure it (this is given by the number of significant figures and 
uncertainty) 
3. State the units 

 
Dealing with Uncertainties 
  
Now you know the kinds of errors, random and systematic, that can occur with physical measurements and you 
should also have a very good idea of how to estimate the magnitude of the random error that occurs when 
making measurements. Now we can deal with the question, "what do we do with the uncertainties when we add 
or subtract two measurements? Or divide/multiply two measurements?"  
  

1 
 

2 
 

3 
 



When you mathematically manipulate a measurement you must take into consider the precision. If you add two 
measurements the result CANNOT be more precise than your measures.  It just doesn’t make sense.  Here’s an 
example.   
  
Let’s say you make the following measurements for the mass of a copper weight in a small cylinder: 

• Mass of empty container: 2.3 g  
• Mass of container with copper: 22.54 g  

  
What is the mass of the copper?  22.54 - 2.3 = 20.24 g 
Answer to report: 20.2 g 
  
Why 20.2 g and not 20.24 g?  
  
Since you only measured the container to the tenths place then the 3 is really an estimate.  Perhaps the actual 
value was 2.2 or 2.4 g, then the mass of copper could be (22.54-2.3 or 22.54-2.4) 20.34 or 20.14 g.  As you can 
see the difference in the tenths place is far more significant than the hundredths place.  So the mass you should 
report is 20.2 g 
  
Remember that when making measurements there are three parts to a measurement:  
  

• The measurement  
• The uncertainty  
• The unit  

  
To take into consideration precision 

1. For single measurements  
a. For the measurement ñ use significant figures  
b. For the uncertainty ñ use error propagation  
c. It doesn’t make sense to talk about a unit’s precision  
d. Once you have the determined the value and uncertainty, make sure the significant figures and 

uncertainty match.  
  
Resource: Significant figures & Uncertainties  
  
The uncertainty of a calculated value, and therefore the possible random error, can be estimated from 
uncertainties of individual measurements which are required for that particular calculation. In a calorimetry 
experiment, for example, the uncertainty in the amount of heat produced depends on the uncertainties in the 
mass, temperature and specific heat measurements. The estimation of an overall uncertainty from component 
parts is called Error Propagation. 
  

2. For a set of the trials for which you are finding the average  
a. Use the average and standard deviation for both the measurement and the uncertainty.  

  
Another measure of uncertainty or precision arises when an experiment is repeated many times, yielding several 
results from which an average value can be calculated. The precision is a measure of how close the results are to 
the average value. The uncertainty (here called experimental uncertainty) is a measure of how far apart the 
results are from the average. This usually is calculated either as the average (and percent average) deviation or 
as the standard deviation compared to the average of the final results. The average value should always be the 
average of the final results calculated from each trial, rather than the average of the raw data or results of 
intermediate calculations. This uncertainty of an experiment is a measure of random error. If the uncertainty is 
low, then the random error is small. 
  



**You should never take the average of beginning measurements (raw data) or intermediate data.  Only final 
results should be averaged.   
  
  
Example 1: Standardization of NaOH by titration 
The following concentrations, in mol / dm3, were calculated from the results of three trials: 
         
        0.0945, 0.0953, 0.1050 
  
The average value is 0.0983 and the standard deviation is 0.0058  
Since uncertainties are meaningful only to one sig. fig., the results should be reported as follows:  
Concentration = 0.098 ± 0.006 mol / dm3   
  
   
Significant Figures and Rounding Answers: 
          
Every physical measurement is subject to a degree of uncertainty that, at best, can be decreased only to an 
acceptable level. When numerical data are collected, the values cannot be determined exactly, regardless of the 
nature of the scale or instrument or the care taken by the operator. If the mass of an object is determined with a 
digital balance reading to 0.1 g, the actual value lies in a range above and below the reading. This range is the 
uncertainty of the measurement. Remember every time you take a measurement, the last digit recorded 
represents a guess. If the same object is measured on a balance reading to 0.001 g the uncertainty is reduced, but 
can never be completely eliminated. 
  
The term precision is used to describe the reproducibility of results. It can be defined as the agreement between 
the numerical values of two or more measurements that have been made in an identical fashion.  
The terms precision and reliability are inversely related to uncertainty. Where uncertainty is relatively low, 
precision is relatively high.  Every measurement you make in the lab should tell you the magnitude (size) of the 
object and the precision (reliability) of the instrument used to make the measurement. The number of 
subdivisions on the instrument can indicate the precision of the instrument. 
  

Precision = Reliability = Significant Digits 
  
Rules for Determining Degrees of Precision in a Measurement (sig. figs). 
  
  Rule Example: 

Significant figures 
are in bold 

# of 
Significant 
Figures 

1 All non-zero digits are significant 1234.5667 8 
2 Zeroes after a decimal point AND after a non-zero digit 

are significant 
12.0 
0.0020 

3 
2 

3 Zeroes between non-zero digits are significant 102 3 
4 Zeroes at then end of numbers punctuated by a decimal 

point or line are significant. 
120. 
12Ō0  (1.20 x 103) 
1200 

3 
3 
2 

5 When adding and subtracting, your answer needs to have 
the same number of decimal places as the number with the 
fewest decimal places 

12.0 + 5.23 =17.2 
14.56 -  0.02 = 
14.54 
75 -  5.5 = 70. 
  

1 dec. place 
2 dec. place 
0 dec. place, 
but zero is 
significant 

6 When multiplying and dividing, your answer needs to 12 x 2 = 20 1  



have the same number of significant figures as the number 
with the fewest significant figures 

5.00 x 7.0 = 35 
2.00/6.0 = .33 

2 
2 

7 Exact numbers can be treated as if they have an infinite 
number of significant figures.  (example, you know you 
have 5 quantities of something you are adding together) 

3.2 x 2 = 6.4 2 
  
  

8 When doing more than one calculation, do not round 
numbers until the end.   

13.2 x 2 / 5 = 5  
(not 6) 
  

  

  
  
Error Propagation 
  
In data collection, estimated uncertainties should be indicated for all measurements. These uncertainties may be 
estimated in different ways: 

1. from the smallest division (as for a measuring cylinder)  
2. from the last significant figure in a measurement (as for a digital balance)  
3. from data provided by the manufacture (printed on the apparatus)  

  
The amount of uncertainty attached to a reading is usually expressed in the same units as the reading. This is 
then called the Absolute uncertainty. eg. 25.4 ± 0.1 s.  The symbol for absolute uncertainty is dx, where x is the 
measurement: 
  
In the example: x =25.4 and dx = 0.1 
  
The absolute uncertainty is often converted to show a Percentage or Fractional uncertainty. For the above 
example, this would be: 25.4 ± 0.4% s (0.1 s / 25.4s x 100% = 0.4%).  The symbol for fractional uncertainty is: 
dx/x 
  
**Note that uncertainties are themselves approximate and are not given to more than one significant figure, so 
the percentage uncertainty here is 0.4%, not 0.39370%. 
  
Multiple Readings  
  
If more than one reading of a measurement is made, then the uncertainty increases with each reading.  

 

 

Example 4: 
When using a burette (± 0.02 cm3), you subtract the initial volume from the final volume. The volume 
delivered is: 
 
Final volume = 38.46 ± 0.05 cm3 
Initial volume = 12.15 ± 0.05 cm3 
Total volume delivered = 26.31 ± 0.04 cm3 
 

Example 3: 
For example: 10.0 cm3 of acid is delivered from a 10cm3 pipette (± 0.1 cm3), repeated 3 times. The total 
volumes delivered is 

• 10.0 ± 0.1 cm3  
• 10.0 ±. 0.1 cm3  
• 10.0 ± 0.1 cm3  

Total volume delivered = 30.0 ± 0.3 cm3 
 
 



   
Basic rules for propagation of uncertainties 
  
  Rule Example 
1 When adding or subtracting uncertain values, add the 

absolute uncertainties 
Initial temp. = 34.50oC (± 0.05) 
Final Temp. = 45.21oC (± 0.05) 
 ΔT= 45.21 -34.5 =10.71oC  
        (± 0.05 + 0.05 = ± 0.1oC) 
 ΔT should be reported as  
       10.7 ± 0.1oC 
  

When multiplying or dividing add the percentage 
uncertainties 

Mass = 9.24 g (±0.005g) 
Volume = 14.1cm3 (±0.05cm3) 

a Make calculations Density = 9.24/14.1 =0.655 g/cm3 

b Convert absolute uncertainties to 
percentage/fractional/ relative uncertainties 

Mass: 0.005/9.24x100 = 0.054% 
Vol: 0.05/14.1 x 100 = 0.35 % 

c Add percentage uncertainties 0.054 + 0.35 = 0.40 % 
Density = 0.655 g/cm3 (± 0.40%) 

2 

d Convert total uncertainty back to absolute 
uncertainty 

0.655 *0.4/100 = 0.00262 
Density = 0.655 ± 0.003 g/cm3 

3 Multiplying or dividing by a pure (whole) number:  
multiply or divide the uncertainty by that number.  4.95 ± 0.05 x 10 = 49.5 ±0.5 

4 Powers: 
…       When raising to the nth power, multiply the % 
uncertainty by n.  
…       When extracting the nth root, divide the % 
uncertainty by n. 

(4.3 ± .5 cm)3 = 4.33 ± (.5/4.3)*3 
= 79.5 cm3 (± 0.349%) 
= 79.5 ± 0.3 cm3 

5  Formulas: 
Follow the order of operations: find uncertainties for numbers added and subtracted.  Use 
that new uncertainty when calculating uncertainty for multiplication and division portion of 
formula, etc.  This can be very complex.  See example below.  
  

  Graphing 
Graphing is an excellent way to average a range of values. When a range of values is plotted 
each point should have error bars drawn on it. The size of the bar is calculated from the 
uncertainty due to random errors. Any line that is drawn should be within the error bars of 
each point. 
If it is not possible to draw a line of “best” fit within the error bars then the systematic errors 
are greater than the random errors. 

  



 
  
Example of Error Propagation with Formula 

1. A student performs an experiment to determine the specific heat of a sample of metal.  212.01 g of the 
metal at 95.5oC was placed into 150.25 g of 25.2 oC water in the calorimeter.  The temperature of the water 
went to 27.5oC. Given: CH2O = 4.18 J/g-oC.  The thermometer was marked in 1 oC increments and the 
balance was digital.  

a. Calculate the specific heat of the metal Cm using the following equation:  
b. Calculate the uncertainty in the  

             i.  Temperature  
(absolute uncertainty is ‡ distance between smallest mark, for this thermometer which measures to 
the nearest ƒC, uncertainty is 0.5oC) 
1.     Tf = 27.5 ± 0.5 oC   
2.     Ti (H2O) = 25.2 ± 0.5 oC 
3.     Ti (metal) = 95.5 ± 0.5 oC 
4.     ΔT (H2O) = (27.5-25.2) ± (0.5 + 0.5) =  4.3 ± 1 oC     % =1/4.3*100 =23%  
5.     ΔT (metal) = (95.5-27.5) ± (0.5 + 0.5) =  68 ± 1 oC     % =1/68*100 =1.5%  

              ii. Mass 
(absolute uncertainty for electronic balance half of smallest decimal place) 
1.     H2O = 150.25 ± 0.05 g                %=.033%  
2.     metal = 212.01 ± 0.05 g               %=.024% 

               iii. specific heat capacity 
1.     assume there is no uncertainty in numbers used as constants. So no uncertainty in water’s 

specific heat capacity. 
2.     (metal) add % uncertainties for all quantities involved in the calculation of the heat capacity 
0.033  + 23 + .024 + 1.5 = 24.6 % 
0.1002 J/g-oC (±24.6%) = .10 ± .02 J/g-oC 
  

c. Calculate the percent error if the literature value is 0.165 J/g-oC.  
 
d. Comment on the error.  Is the uncertainty greater or less than the percent error?  Is the error random or 
systemic?  Explain  

  
Since percent error is much greater than the uncertainty and the literature value does not fall in the 
range of uncertainty (.10 ± 0.02 J/g-oC), than systematic errors are a problem.  Random error is 
estimated by the uncertainty and since this is smaller than the percent error, systematic errors are at 
work and are making the measured data inaccurate.   

  
Resource: Statistical Calculations 
Resource Calculating standard deviation with a calculator (TI-83) 


